Application of Collocation Meshless Method to Eigenvalue Problem∗)
نویسندگان
چکیده
The numerical method for solving the nonlinear eigenvalue problem has been developed by using the collocation Element-Free Galerkin Method (EFGM) and its performance has been numerically investigated. The results of computations show that the approximate solution of the nonlinear eigenvalue problem can be obtained stably by using the developed method. Therefore, it can be concluded that the developed method is useful for solving the nonlinear eigenvalue problem.
منابع مشابه
Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملCoupling Projection Domain Decomposition Method and Meshless Collocation Method Using Radial Basis Functions in Electromagnetics
This paper presents an efficient meshless approach for solving electrostatic problems. This novel approach is based on combination of radial basis functions-based meshless unsymmetric collocation method with projection domain decomposition method. Under this new method, we just need to solve a Steklov-Poincaré interface equation and the original problem is solved by computing a series of indepe...
متن کاملConvergence order estimates of meshless collocation methods using radial basis functions
We study meshless collocation methods using radial basis functions to approximate regular solutions of systems of equations with linear diier-ential or integral operators. Our method can be interpreted as one of the emerging meshless methods, cf. 1]. Its range of application is not conned to elliptic problems. However, the application to the boundary value problem for an elliptic operator, conn...
متن کاملThree-dimensional Crack Propagation Analysis Using Meshless Point Collocation Method
This paper presents a meshless point collocation method for three-dimensional crack propagation. The meshless point collocation method is based on direct discretization of strong-form governing equations to achieve a truly meshless scheme that does not require mesh structures or a numerical integration procedure. These characteristics of the point collocation method enable the direction of an a...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کامل